Setting Up A Nagios Monitoring System
Warren Block, May 2005

What Is Nagios?

NAGIOS (na gee ose) is a system that will monitor the status of other network computers or
components. It can watch your network and alert you when things happen. If a computer stops
responding or fails somehow, Nagios can send an email, page or let you know in some other way.
At the same time, it will create a web page that shows the current status of all the systems being
monitored.

Because Nagios has so many capabilities, it can be complex to set up. Here, we'll have it monitor
itself and only one other computer. FreeBSD is used for the Nagios system, so we can take
advantage of the Ports Collection to make things easier.

Setting Up FreeBSD

Not much of a computer is needed for Nagios. A P166 system could easily handle a hundred
monitored machines. 32M of RAM and 4G of disk is adequate, so this can be a good use for old

computers. Nagios could also be added to an existing system without adding much load.

A plain-vanilla FreeBSD installation from the FreeBSD 5.3-Release CD is the starting point.
Update the ports so all the latest versions are available:

cp /usr/share/examples/cvsup/ports-supfile /root
(edit ports-supfile to point to the closest cvsup mirror)
pkg_add -r cvsup-without-gui
rehash
cvsup /root/ports-supfile
Install Nagios

The Ports Collection makes installing Nagios easy:

cd /usr/ports/net-mgmt/nagios
make install clean

To enable Nagios, add this line to /etc/rc.conf:

nagios_enable="YES"”

Configure Nagios

Configuration is the biggest part of setting up Nagios. Fortunately, much of it is one-time, and
making later additions is easier.

On FreeBSD, the configuration files for added software are stored in the /usr/local/etc
directory. Because Nagios has many config files, it keeps them all there in a subdirectory called
nagios.

cd /usr/local/etc/nagios

Nagios includes samples of most of the conf files, so they can be copied and modified. First we'll
do this with the main config file, nagios.cfg:

cp nagios.cfg-sample nagios.cfg
There are two changes we need to make in this file. The first is to set cfg_file to tell Nagios
where our site configuration file is located. This file will contain the list of all the computers and
services we want to monitor, and will be called mysite.cfg:

cfg file=/usr/local/etc/nagios/mysite.cfg

The second change is to comment out all other cfg_file lines by prefixing them with a # sign.
In the minimal install shown here, those other files will not be needed.

To set up the local plugins that will be used on the Nagios machine itself, we also need to copy
the resource config file. No internal changes are needed, though:

cp resource.cfg-sample resource.cfg

Now we will create that mysite.cfgfile mentioned earlier. It's based on the minimal sample
configuration provided with Nagios:

cp minimal.cfg-sample mysite.cfg
The example minimal configuration has Nagios just monitoring itself. This is not greatly useful,
so we will add one other computer, or host, to be watched. First, we need another entry in the

Hosts section. This is easiest made by copying the existing localhost entry and just changing
the name and address:

define host{

use generic-host
host name paranoid

alias Being Watched
address 10.0.0.7

check command check-host-alive
max check attempts 10

notification interval 120

notification period 24x7
notification options d,r

contact groups admins

In a similar fashion, we'll add another group:

define hostgroup{

hostgroup_name watched
alias Monitored Machines
members paranoid

}

If you have multiple hosts being monitored, they would be entered as a comma-separated list on
the members line.

Finally, we'll add a service. Each service is one thing that is monitored on an individual host. A
check for HTTP would be a service, as would a free disk space check. Our single service will be a
simple ping to see if the host is up.

define service{

use generic-service
host name paranoid
service_description PING
is_volatile 0

check period 24x7

max check attempts 4

normal check interval 5

retry check interval 1

contact groups admins
notification_interval 960
notification period 24x7

check command check ping!100.0,20%!500.0,60%

}

That's it for mysite.cfq.
Now we'll set up the last Nagios config file, cgi.cfg. As you might expect, it sets up CGI
parameters, controlling what can be done by users on the Nagios web page.
cp cgi.cfg-sample cgi.cfg
Editing cgi.cfg, we'll uncomment the long line that says:

nagios_check command=/usr/local/libexec/nagios/check nagios \
/var/spool/nagios/status.log 5 '/usr/local/bin/nagios’

We'll also add a line to let our authorized user (guest) see information on all hosts being
monitored:

authorized for all hosts=guest
Finally, we'll have Nagios check the configuration for problems:
nagios -v /usr/local/etc/nagios/nagios.cfg

Problems are usually caused by path or punctuation errors. Fix them and try again until Nagios
reports that “things look okay.”

Install Apache
Again, an easy FreeBSD port:

cd /usr/ports/www/apache?2
make install clean
rehash

Enable Apache2 in /etc/rc.conf:

apache2 enable="YES"”

Configure Apache

A few settings need to made in the Apache config file, httpd.conf. As usual, FreeBSD places
these files in /usr/local/etc, and the file we need is in a subdirectory called apache?2:

cd /usr/local/etc/apache?

We need to tell Apache where the Nagios CGI programs and files live. Adding this section to
httpd.conf just after the first ScriptAlias already in that file will do it:

Nagios
ScriptAlias /nagios/cgi-bin /usr/local/share/nagios/cgi-bin
<Directory "/usr/local/share/nagios/cgi-bin">
AllowOverride AuthConfig
Options ExecCGI
Order allow,deny
Allow from all
</Directory>

Alias /nagios /usr/local/share/nagios
<Directory "/usr/local/share/nagios">
Options None
AllowOverride AuthConfig
Order allow,deny
Allow from all
</Directory>
end of Nagios section

Now we will set up the files to get Apache to authenticate our guest user. Create a file called
/usr/local/share/nagios/cgi-bin/.htaccesswith these contents:

AuthName "Nagios Access"

AuthType Basic

AuthUserFile /usr/local/etc/nagios/htpasswd.users
require valid-user

And finally, create a password for that web user:

htpasswd -c /usr/local/etc/nagios/htpasswd.users guest
(enter password for guest user)

Start Nagios And Apache

/usr/local/etc/rc.d/nagios.sh start
/usr/local/etc/rc.d/apache2.sh start

If your Nagios computer has a DNS hostname of “naggy”, you should now be able to see the
Nagios screen at

http://naggy/nagios

Click on “Service Detail” on the left, and Apache will ask for a username and password. Use the
username guest and enter the password you defined above. The status of each host's services
should start out as unknown. After a few minutes, they will update as they are tested.

More Information

http://www.freebsd.org

http://www.naqgios.org

